Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Hortic Res ; 11(3): uhae004, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38464479

ABSTRACT

In fruits, cuticular waxes affect fruit quality traits such as surface color at harvest and water loss during postharvest storage. This study investigated the transcriptional regulation of cuticular wax deposition in northern highbush blueberries (Vaccinium corymbosum L.) in relation to fruit water loss and surface color during ripening and postharvest storage, as well as the effects of abscisic acid (ABA)-mediated changes in cuticular wax deposition on these fruit quality traits. Total cuticular wax content (µg∙cm-2) decreased during fruit ripening and increased during postharvest storage. Transcriptome analysis revealed a transcript network for cuticular wax deposition in blueberries. Particularly, five OSC-Likes were identified as putative genes for triterpene alcohol production, with OSC-Like1 and OSC-Like2 encoding mixed amyrin synthases, OSC-Like3 encoding a lupeol synthase, and OSC-Like4 and OSC-Like5 encoding cycloartenol synthases. The expression of three CYP716A-like genes correlated to the accumulation of two triterpene acids oleanolic acid and ursolic acid, the major wax compounds in blueberries. Exogenous ABA application induced the expression of triterpenoid biosynthetic genes and the accumulation of ß-amyrin and oleanolic acid, as well as increased the ratio of oleanolic acid to ursolic acid. These changes were associated with reduced fruit water loss. The content of ß-diketones was also increased by ABA application, and this increase was associated with increased fruit lightness (measured as L* using CIELAB Color Space by a colorimeter). This study provided key insights on the molecular basis of cuticular wax deposition and its implications on fruit quality traits in blueberries.

2.
Chem Commun (Camb) ; 60(19): 2645-2648, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38348771

ABSTRACT

We report a "solo-solvent de novo liquid-phase" method of synthesizing a highly-favored sulfide electrolyte (Li6PS5Cl) for developing all-solid-state lithium batteries. The key chemistry for such a successful method is that tetrahydropyrrole enables in situ synthesis of the critical precursor Li2S from cheap and air-stable precursors of lithium chloride and sodium sulfide.

3.
Curr Probl Cardiol ; 49(4): 102425, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311275

ABSTRACT

The right ventricular (RV) function correlates with prognosis in severe pulmonary artery hypertension (PAH) but which metric of it is most clinically relevant is still uncertain. Clinical methods to estimate RV function from simplified pressure volume loops correlate with disease severity but the clinical relevance has not been assessed. Evaluation of right ventricle pulmonary artery coupling in pulmonary hypertensive patients may help to elucidate the mechanisms of right ventricular failure and may also help to identify patients at risk or guide the timing of therapeutic interventions in pulmonary hypertension. Complete evaluation of RV failure requires echocardiographic or magnetic resonance imaging, and right heart catheterization measurements. Treatment of RV failure in PAH relies on decreasing afterload with drugs targeting pulmonary circulation; fluid management to optimize ventricular diastolic interactions; and inotropic interventions to reverse cardiogenic shock. The ability to relate quantitative metrics of RV function in pulmonary artery hypertension to clinical outcomes can provide a powerful tool for management. Such metrics could also be utilized in the future as surrogate endpoints for outcomes and evaluation of response to therapies. This review of literature gives an insight on RV-PA coupling associated with PAH, its types of measurement and pharmacological treatment.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Artery/diagnostic imaging , Heart Ventricles/diagnostic imaging , Pulmonary Arterial Hypertension/diagnosis , Pulmonary Arterial Hypertension/drug therapy , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology
4.
Microb Cell Fact ; 23(1): 64, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402158

ABSTRACT

Phosphate solubilizing fungi Penicillium oxalicum (POX) and Red yeast Rhodotorula mucilaginosa (Rho) have been applied in Pb remediation with the combination of fluorapatite (FAp), respectively. The secretion of oxalic acid by POX and the production of extracellular polymers (EPS) by Rho dominate the Pb remediation. In this study, the potential of Pb remediation by the fungal combined system (POX and Rho) with FAp was investigated. After six days of incubation, the combination of POX and Rho showed the highest Pb remove ratio (99.7%) and the lowest TCLP-Pb concentration (2.9 mg/L). The EPS combined with POX also enhanced Pb remediation, which has a 99.3% Pb removal ratio and 5.5 mg/L TCLP-Pb concentration. Meanwhile, Rho and EPS can also stimulate POX to secrete more oxalic acid, which reached 1510.1 and 1450.6 mg/L in six days, respectively. The secreted oxalic acid can promote FAp dissolution and the formation of lead oxalate and pyromorphite. Meanwhile, the EPS produced by Rho can combine with Pb to form EPS-Pb. In the combined system of POX + Rho and POX + EPS, all of the lead oxalate, pyromorphite, and EPS-Pb were observed. Our findings suggest that the combined application of POX and Rho with FAp is an effective approach for enhancing Pb remediation.


Subject(s)
Apatites , Biological Products , Minerals , Penicillium , Lead , Phosphates , Oxalic Acid
5.
Biomaterials ; 305: 122470, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228027

ABSTRACT

The efficacy of radiotherapy has not yet achieved optimal results, partially due to insufficient priming and infiltration of effector immune cells within the tumor microenvironment (TME), which often exhibits suppressive phenotypes. In particular, the infiltration of X-C motif chemokine receptor 1 (XCR1)-expressing conventional type-1 dendritic cells (cDC1s), which are critical in priming CD8+ cytotoxic T cells, within the TME is noticeably restricted. Hence, we present a facile methodology for the efficient fabrication of a calcium phosphate hydrogel loaded with X-C motif chemokine ligand 1 (XCL1) to selectively recruit cDC1s. Manganese phosphate microparticles were also loaded into this hydrogel to reprogram the TME via cGAS-STING activation, thereby facilitating the priming of cDC1s propelled specific CD8+ T cells. They also polarize tumor-associated macrophages towards the M1 phenotype and reduce the proportion of regulatory cells, effectively reversing the immunosuppressive TME into an immune-active one. The yielded XCL1@CaMnP gel exhibits significant efficacy in enhancing the therapeutic outcomes of radiotherapy, particularly when concurrently administered with postoperative radiotherapy, resulting in an impressive 60 % complete response rate. Such XCL1@CaMnP gel, which recruits cDC1s to present tumor antigens generated in situ, holds great potential as a versatile platform for enhanced cancer treatment through modulating the immunosuppressive TME.


Subject(s)
CD8-Positive T-Lymphocytes , Cross-Priming , T-Lymphocytes, Cytotoxic , Dendritic Cells , Hydrogels/pharmacology , Tumor Microenvironment
6.
Magn Reson Med ; 91(3): 987-1001, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37936313

ABSTRACT

PURPOSE: This study aims to develop a high-efficiency and high-resolution 3D imaging approach for simultaneous mapping of multiple key tissue parameters for routine brain imaging, including T1 , T2 , proton density (PD), ADC, and fractional anisotropy (FA). The proposed method is intended for pushing routine clinical brain imaging from weighted imaging to quantitative imaging and can also be particularly useful for diffusion-relaxometry studies, which typically suffer from lengthy acquisition time. METHODS: To address challenges associated with diffusion weighting, such as shot-to-shot phase variation and low SNR, we integrated several innovative data acquisition and reconstruction techniques. Specifically, we used M1-compensated diffusion gradients, cardiac gating, and navigators to mitigate phase variations caused by cardiac motion. We also introduced a data-driven pre-pulse gradient to cancel out eddy currents induced by diffusion gradients. Additionally, to enhance image quality within a limited acquisition time, we proposed a data-sharing joint reconstruction approach coupled with a corresponding sequence design. RESULTS: The phantom and in vivo studies indicated that the T1 and T2 values measured by the proposed method are consistent with a conventional MR fingerprinting sequence and the diffusion results (including diffusivity, ADC, and FA) are consistent with the spin-echo EPI DWI sequence. CONCLUSION: The proposed method can achieve whole-brain T1 , T2 , diffusivity, ADC, and FA maps at 1-mm isotropic resolution within 10 min, providing a powerful tool for investigating the microstructural properties of brain tissue, with potential applications in clinical and research settings.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Mathematical Concepts
7.
Qual Life Res ; 33(2): 481-490, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37971668

ABSTRACT

OBJECTIVES: Long-term care of severe brain injury patients places a significant mental burden on family caregivers, yet few studies have reported the situation in China. We aimed to describe the mood states of family caregivers of patients with severe brain injury and examine the influencing factors that affect caregivers' moods. METHODS: Cross-sectional survey was used to assess the mood profiles of Chinese family caregivers between February 2019 and February 2020. Demographic data of caregivers and patients, the Patient Health Questionnaire (PHQ-9) and the Generalized Anxiety Disorder scale (GAD-7) were used to assess the level of depressive and anxiety symptoms. The quality of life score was also assessed by a visual analog scale, and the Coma Recovery Scale-Revised was used to assess the patient's consciousness. RESULT: One hundred and one patients with severe brain injury (57 unresponsive wakefulness syndrome, UWS) between the age of 14 and 70 and their main family caregivers were enrolled in the study. Most caregivers displayed depressive (n = 62) and anxiety symptoms (n = 65), with 17 and 20 of these family caregivers reporting (moderately) severe depressive symptom and severe anxiety symptom, respectively. The caregiver's depressive symptom level significantly decreased as the patient's injury lasted longer (r = - 0.208, P = 0.037). Moreover, the age of the patient negatively related to the levels of depressive (r = - 0.310, P = 0.002) and anxiety symptoms (r = - 0.289, P = 0.003) in caregivers. There was a significant positive correlation between anxiety and depressive symptoms scores in family caregivers (r = 0.838, P < 0.001). The higher the level of anxiety (r = - 0.273, P = 0.006) and depressive symptoms (r = - 0.265, P = 0.007), the worse the quality of life. CONCLUSION: Many family caregivers of patients with severe brain injury experience various levels of anxiety and depressive symptoms in China. Tailor-made psychological help seems imperative. Researchers and doctors can provide information about patient's conditions to assist family members in discussing rehabilitation options for patients in different states of consciousness will help to ease anxiety of family caregivers.


Subject(s)
Brain Injuries , Caregivers , Humans , Caregivers/psychology , Quality of Life/psychology , Cross-Sectional Studies , Anxiety/psychology , Depression/psychology , Family/psychology
8.
ACS Nano ; 17(18): 18089-18102, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37669546

ABSTRACT

Efferocytosis of apoptotic cancer cells by tumor-associated macrophages or other phagocytes is reported to promote tumor immunosuppression by preventing them from secondary necrosis, which would lead to the release of intracellular components and thus enhanced immunogenicity. Therefore, current apoptosis-inducing cancer treatments (e.g., chemotherapy and radiotherapy) are less satisfactory in eliciting antitumor immunity. Herein, a nanoparticulate inhibitor of efferocytosis is prepared by encapsulating BMS777607, a hydrophobic inhibitor of receptors in macrophages responsible for phosphatidylserine-dependent efferocytosis, with biocompatible poly(lactic-co-glycolic acid) and its amphiphilic derivatives. The yielded nano-BMS can inhibit the efferocytosis of apoptotic cancer cells, thus redirecting them to immunogenic secondary necrosis. As a result, intratumorally injected nano-BMS is capable of activating both innate and adaptive antitumor immunity to achieve greatly improved therapeutic responses, when synergized with nonimmunogenic chemotherapy by cisplatin, immunogenic chemotherapy by oxaliplatin, or radiotherapy by external beams. Moreover, we further demonstrate that the inhalation of nano-BMS could significantly promote the efficacy of cisplatin chemotherapy to suppress tumor lung metastases. Therefore, this study highlights a general strategy to potentiate the immunogenicity of different cancer treatments by suppressing efferocytosis-propelled tumor immunosuppression, showing tremendous clinical potential in rescuing existing cancer therapies for more effective treatment.


Subject(s)
Cisplatin , Neoplasms , Humans , Phagocytosis , Necrosis , Apoptosis , Macrophages , Neoplasms/drug therapy
9.
ACS Appl Mater Interfaces ; 15(19): 23265-23275, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37146267

ABSTRACT

Electrocatalytic oxidation of glycerol (GLY; from a biodiesel byproduct) to lactic acid (LA; the key monomers for polylactic acid; PLA) is considered a sustainable approach for biomass waste upcycling and is coupled with cathodic hydrogen (H2) production. However, current research still suffer from issues of low current density and low LA selectivity. Herein, we reported a photoassisted electrocatalytic strategy to achieve the selective oxidation of GLY to LA over a gold nanowire (Au NW) catalyst, attaining a high current density of 387 mA cm-2 at 0.95 V vs RHE, together with a high LA selectivity of 80%, outperforming most of the reported works in the literature. We reveal that the light-assistance strategy plays a dual role, which can both accelerate the reaction rate through the photothermal effect and also promote the adsorption of the middle hydroxyl of GLY over Au NWs to realize the selective oxidation of GLY to LA. As a proof-of-concept, we realized the direct conversion of crude GLY that was extracted from cooking oil to attain LA and coupled it with H2 production using the developed photoassisted electrooxidation process, revealing the potential of this strategy in practical applications.

10.
Front Pharmacol ; 14: 1127123, 2023.
Article in English | MEDLINE | ID: mdl-37033616

ABSTRACT

Pathological cardiac hypertrophy is an important risk factor for cardiovascular disease. However, drug therapies that can reverse the maladaptive process and restore heart function are limited. Ganoderma lucidum polysaccharides (GLPs) are one of the main active components of G. lucidum (Ganoderma lucidum), and they have various pharmacological effects. GLPs have been used as Chinese medicine prescriptions for clinical treatment. In this study, cardiac hypertrophy was induced by transverse aortic constriction (TAC) in mice. We found that GLPs ameliorate Ang II-induced cardiomyocyte hypertrophy in vitro and attenuate pressure overload-induced cardiac hypertrophy in vivo. Further research indicated that GLPs attenuated the mRNA levels of hypertrophic and fibrotic markers to inhibit cardiac hypertrophy through the PPARγ/PGC-1α pathway. Overall, these results indicate that GLPs inhibit cardiac hypertrophy through downregulating key genes for hypertrophy and fibrosis and attenuate pressure overload-induced pathological cardiac hypertrophy by activating PPARγ. This study provides important theoretical support for the potential of using GLPs to treat pathological myocardial hypertrophy and heart failure.

11.
J Colloid Interface Sci ; 643: 137-150, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37058889

ABSTRACT

This study reports a simple method for anchoring dispersed Co nanoparticles on SBA-16 mesoporous molecular sieve coating grown on the 3D-printed ceramic monolith (i.e., Co@SBA-16/ceramic). The monolithic ceramic carriers with a designable versatile geometric channel could improve the fluid flow and mass transfer but exhibited a smaller surface area and porosity. The SBA-16 mesoporous molecular sieve coating was loaded onto the surface of the monolithic carriers using a simple hydrothermal crystallization strategy, which can increase the surface area of the monolithic carriers and facilitate the loading of active metal sites. In contrast to the conventional impregnation loading method (Co-AG@SBA-16/ceramic), dispersed Co3O4 nanoparticles were obtained by directly introducing Co salts into the as-made SBA-16 coating (containing a template), accompanied by conversion of the Co precursor and removal of the template after calcination. These promoted catalysts were characterized by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Brunauer-Emmett-Teller theory, and X-ray photoelectron spectroscopy. The developed Co@SBA-16/ceramic catalysts exhibited excellent catalytic performance for the continuous removal of levofloxacin (LVF) in fixed bed reactors. Co/MC@NC-900 catalyst exhibited a ∼ 78% degradation efficiency in 180 min compared to that of Co-AG@SBA-16/ceramic (17%) and Co/ceramic (0.7%). The improved catalytic activity and reusability of Co@SBA-16/ceramic was because of the better dispersion of the active site within the molecular sieve coating. Co@SBA-16/ceramic-1 exhibits much better catalytic activity, reusability and long-term stability than Co-AG@SBA-16/ceramic. After a 720 min continuous reaction, the LVF removal efficiency of Co@SBA-16/ceramic-1 in a 2 cm fixed-bed reactor was stable at 55%. Using chemical quenching experiments, electron paramagnetic resonance spectroscopy, and liquid chromatography-mass spectrometry, the possible LVF degradation mechanism and degradation pathways were proposed. This study provides novel PMS monolithic catalysts for the continuous and efficient degradation of organic pollutants.

12.
Appl Environ Microbiol ; 89(4): e0200422, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36975809

ABSTRACT

Soft-ripened cheeses (SRCs) are at a higher risk for the growth of the foodborne pathogen Listeria monocytogenes due to favorable moisture content and pH compared to other cheeses. L. monocytogenes growth is not consistent across SRCs, however, and may be affected by physicochemical and/or microbiome characteristics of the cheeses. Therefore, the purpose of this study was to investigate how the physicochemical and microbiome profiles of SRCs may affect L. monocytogenes growth. Forty-three SRCs produced from raw (n = 12) or pasteurized (n = 31) milk were inoculated with L. monocytogenes (103 CFU/g), and the pathogen growth was monitored over 12 days at 8°C. In parallel, the pH, water activity (aw), microbial plate counts, and organic acid content of cheeses were measured, and the taxonomic profiles of the cheese microbiomes were measured using 16S rRNA gene targeted amplicon sequencing and shotgun metagenomic sequencing. L. monocytogenes growth differed significantly between cheeses (analysis of variance [ANOVA]; P < 0.001), with increases ranging from 0 to 5.4 log CFU (mean of 2.5 ± 1.2 log CFU), and was negatively correlated with aw. Raw milk cheeses showed significantly lower L. monocytogenes growth than pasteurized-milk cheeses (t test; P = 0.008), possibly due to an increase in microbial competition. L. monocytogenes growth in cheeses was positively correlated with the relative abundance of Streptococcus thermophilus (Spearman correlation; P < 0.0001) and negatively correlated with the relative abundances of Brevibacterium aurantiacum (Spearman correlation; P = 0.0002) and two Lactococcus spp. (Spearman correlation; P < 0.01). These results suggest that the cheese microbiome may influence the food safety in SRCs. IMPORTANCE Previous studies have identified differences in L. monocytogenes growth between SRCs, but no clear mechanism has yet been elucidated. To the best of our knowledge, this is the first study to collect a wide range of SRCs from retail sources and attempt to identify key factors associated with pathogen growth. A key finding in this research was the positive correlation between the relative abundance of S. thermophilus and the growth of L. monocytogenes. The inclusion of S. thermophilus as a starter culture is more common in industrialized SRC production, suggesting that industrial production of SRC may increase the risk of L. monocytogenes growth. Overall, the results of this study further our understanding of the impact of aw and the cheese microbiome on the growth of L. monocytogenes in SRCs, hopefully leading toward the development of SRC starter/ripening cultures that can prevent L. monocytogenes growth.


Subject(s)
Cheese , Listeria monocytogenes , Microbiota , Food Microbiology , Cheese/microbiology , RNA, Ribosomal, 16S , Colony Count, Microbial
13.
J Am Chem Soc ; 145(11): 6144-6155, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36800212

ABSTRACT

Transformation of biomass and plastic wastes to value-added chemicals and fuels is considered an upcycling process that is beneficial to resource utilization. Electrocatalysis offers a sustainable approach; however, it remains a huge challenge to increase the current density and deliver market-demanded chemicals with high selectivity. Herein, we demonstrate an electrocatalytic strategy for upcycling glycerol (from biodiesel byproduct) to lactic acid and ethylene glycol (from polyethylene terephthalate waste) to glycolic acid, with both products being as valuable monomers for biodegradable polymer production. By using a nickel hydroxide-supported gold electrocatalyst (Au/Ni(OH)2), we achieve high selectivities of lactic acid and glycolic acid (77 and 91%, respectively) with high current densities at moderate potentials (317.7 mA/cm2 at 0.95 V vs RHE and 326.2 mA/cm2 at 1.15 V vs RHE, respectively). We reveal that glycerol and ethylene glycol can be enriched at the Au/Ni(OH)2 interface through their adjacent hydroxyl groups, substantially increasing local concentrations and thus high current densities. As a proof of concept, we employed a membrane-free flow electrolyzer for upcycling triglyceride and PET bottles, attaining 11.2 g of lactic acid coupled with 9.3 L of H2 and 13.7 g of glycolic acid coupled with 9.4 L of H2, respectively, revealing the potential of coproduction of valuable chemicals and H2 fuel from wastes in a sustainable fashion.

14.
J Environ Manage ; 325(Pt A): 116572, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36419286

ABSTRACT

This study aims to investigate the water-leaching characteristics of heavy metal(loid)s (HMs) from historical Pb-Zn mine tailing of an abandoned tailing deposit in eastern China. Up-flow column and batch leaching tests were conducted at different liquid-to-solid (L/S) ratios to estimate the releases of HMs and investigate the controlling mechanisms. Calcite and silicate were the dominant minerals in the tailing and the HMs contents followed the order of Zn (2371 mg/kg) > Pb (2061 mg/kg) > Cu (109 mg/kg) > Cr (47.8 mg/kg) > As (15.9 mg/kg) > Cd (5.1 mg/kg). Moreover, considerable fractions of Pb, Zn, and Cd existed in the acid-soluble forms (41-47%). Column and batch leaching tests consistently showed that limited quantities (<0.002%) of HMs could be leached from this historical tailing. In particular, variations in column conditions (e.g., length, flow rate, and initial saturation) significantly affected the release fluxes from the columns but had a relatively limited effect on the leaching mechanisms. The estimated results of HM release suggested that the leaching process was predominantly solubility-controlled and the dissolution of Ca-bearing minerals (e.g., calcite) primarily controlled the release of HMs. The studied tailing had a limited impact on the quality of the surrounding aquatic environments because the water-leaching concentrations of HMs were generally lower than the Chinese standards for drinking water. Only for Pb, the leaching results in column tests were significantly lower than those in batch tests; whereas the results in column tests for other HMs were comparable to those in batch tests to a certain extent. Based on the column test results, the amounts of HMs potentially released from the abandoned tailing deposit (height, 10 m; footprint area, 30,000 m2; tailing dry density, 1.9 × 103 kg/m3) followed a decreasing order of Zn (4.2 × 105 kg) > Cu (2.3 × 104 kg) > Pb (1.4 × 104 kg) > Cr (2.3 × 104 kg) > Cd (1.6 × 103 kg) > As (1.2 × 103 kg) over the 75-year assessment period (corresponding to an L/S ratio of 10 L/kg with an annual precipitation of 1500 mm).


Subject(s)
Lead , Metals, Heavy , Cadmium , Calcium Carbonate , Mining , Zinc
15.
Angew Chem Int Ed Engl ; 62(3): e202213711, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36418219

ABSTRACT

Electrochemical reduction of nitrite (NO2 - ) offers an energy-efficient route for ammonia (NH3 ) synthesis and reduction of the level of nitrite, which is one of the major pollutants in water. However, the near 100 % Faradaic efficiency (FE) has yet to be achieved due to the complicated reduction route with several intermediates. Here, we report that carbon dioxide (CO2 ) can enhance the nitrite electroreduction to ammonia on copper nanowire (Cu NW) catalysts. In a broad potential range (-0.7∼-1.3 V vs. RHE), the FE of nitrite to ammonia is close to 100 % with a 3.5-fold increase in activity compared to that obtained without CO2. In situ Raman spectroscopy and density functional theory (DFT) calculations indicate that CO2 acts as a catalyst to facilitate the *NO to *N step, which is the rate determining step for ammonia synthesis. The promotion effect of CO2 can be expanded to electroreduction of other nitro-compounds, such as nitrate to ammonia and nitrobenzene to aniline.

16.
Crit Rev Food Sci Nutr ; 63(19): 3574-3601, 2023.
Article in English | MEDLINE | ID: mdl-34766521

ABSTRACT

The consumption of small fruits has increased in recent years. Besides their appealing flavor, the commercial success of small fruits has been partially attributed to their high contents of phenolic compounds with multiple health benefits. The phenolic profiles and contents in small fruits vary based on the genetic background, climate, growing conditions, and post-harvest handling techniques. In this review, we critically compare the profiles and contents of phenolics such as anthocyanins, flavonols, flavan-3-ols, and phenolic acids that have been reported in bilberries, blackberries, blueberries, cranberries, black and red currants, raspberries, and strawberries during fruit development and post-harvest storage. This review offers researchers and breeders a general guideline for the improvement of phenolic composition in small fruits while considering the critical factors that affect berry phenolics from cultivation to harvest and to final consumption.


Subject(s)
Anthocyanins , Fruit , Fruit/chemistry , Phenols/analysis , Flavonols , Antioxidants
17.
Crit Rev Biotechnol ; 43(7): 1073-1091, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35997331

ABSTRACT

Bacillus amyloliquefaciens is one of the most characterized Gram-positive bacteria. This species has unique characteristics that are beneficial for industrial applications, including its utilization of: cheap carbon as a substrate, a transparent genetic background, and large-scale robustness in fermentation. Indeed, the productivity characteristics of B. amyloliquefaciens have been thoroughly analyzed and further optimized through systems biology and synthetic biology techniques. Following the analysis of multiple engineering design strategies, B. amyloliquefaciens is now considered an efficient cell factory capable of producing large quantities of multiple products from various raw materials. In this review, we discuss the significant potential advantages offered by B. amyloliquefaciens as a platform for metabolic engineering and industrial applications. In addition, we systematically summarize the recent laboratory research and industrial application of B. amyloliquefaciens, including: relevant advances in systems and synthetic biology, various strategies adopted to improve the cellular performances of synthetic chemicals, as well as the latest progress in the synthesis of certain important products by B. amyloliquefaciens. Finally, we propose the current challenges and essential strategies to usher in an era of broader B. amyloliquefaciens use as microbial cell factories.

18.
Nat Commun ; 13(1): 5009, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36008416

ABSTRACT

Adipic acid is an important building block of polymers, and is commercially produced by thermo-catalytic oxidation of ketone-alcohol oil (a mixture of cyclohexanol and cyclohexanone). However, this process heavily relies on the use of corrosive nitric acid while releases nitrous oxide as a potent greenhouse gas. Herein, we report an electrocatalytic strategy for the oxidation of cyclohexanone to adipic acid coupled with H2 production over a nickel hydroxide (Ni(OH)2) catalyst modified with sodium dodecyl sulfonate (SDS). The intercalated SDS facilitates the enrichment of immiscible cyclohexanone in aqueous medium, thus achieving 3.6-fold greater productivity of adipic acid and higher faradaic efficiency (FE) compared with pure Ni(OH)2 (93% versus 56%). This strategy is demonstrated effective for a variety of immiscible aldehydes and ketones in aqueous solution. Furthermore, we design a realistic two-electrode flow electrolyzer for electrooxidation of cyclohexanone coupling with H2 production, attaining adipic acid productivity of 4.7 mmol coupled with H2 productivity of 8.0 L at 0.8 A (corresponding to 30 mA cm-2) in 24 h.

19.
ACS Synth Biol ; 11(8): 2766-2778, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35939037

ABSTRACT

Engineered synthetic scaffolds to organize metabolic pathway enzymes and system pathway engineering to fine-tune metabolic fluxes play essential roles in microbial production. Here, we first obtained the most favorable combination of key enzymes for 5-aminolevulinic acid (5-ALA) synthesis through the C5 pathway by screening enzymes from different sources and optimizing their combination in different pathways. Second, we successfully constructed a multienzyme complex assembly system with PduA*, which spatially recruits the above three key enzymes for 5-ALA synthesis in a designable manner. By further optimizing the ratio of these key enzymes in synthetic scaffolds, the efficiency of 5-ALA synthesis through the C5 pathway was significantly improved. Then, the competitive metabolism pathway was fine-tuned by rationally designing different antisense RNAs, further significantly increasing 5-ALA titers. Furthermore, for efficient 5-ALA synthesis, obstacles of NADH and NADPH imbalances and feedback inhibition of the synthesis pathway were also overcome through engineering the NADPH regeneration pathway and transport pathway, respectively. Finally, combining these strategies with further fermentation optimization, we achieved a final 5-ALA titer of 11.4 g/L. These results highlight the importance of synthetic scaffolds and system pathway engineering to improve the microbial cell factory production performance.


Subject(s)
Aminolevulinic Acid , Metabolic Engineering , Aminolevulinic Acid/metabolism , Biosynthetic Pathways , Fermentation , Metabolic Engineering/methods , Metabolic Networks and Pathways
20.
Front Bioeng Biotechnol ; 10: 905110, 2022.
Article in English | MEDLINE | ID: mdl-35757793

ABSTRACT

Bacillus amyloliquefaciens is the dominant strain used to produce γ-polyglutamic acid from inulin, a non-grain raw material. B. amyloliquefaciens has a highly efficient tricarboxylic acid cycle metabolic flux and glutamate synthesis ability. These features confer great potential for the synthesis of glutamate derivatives. However, it is challenging to efficiently convert high levels of glutamate to a particular glutamate derivative. Here, we conducted a systematic study on the biosynthesis of L-ornithine by B. amyloliquefaciens using inulin. First, the polyglutamate synthase gene pgsBCA of B. amyloliquefaciens NB was knocked out to hinder polyglutamate synthesis, resulting in the accumulation of intracellular glutamate and ATP. Second, a modular engineering strategy was applied to coordinate the degradation pathway, precursor competition pathway, and L-ornithine synthesis pathway to prompt high levels of intracellular precursor glutamate for l-ornithine synthesis. In addition, the high-efficiency L-ornithine transporter was further screened and overexpressed to reduce the feedback inhibition of L-ornithine on the synthesis pathway. Combining these strategies with further fermentation optimizations, we achieved a final L-ornithine titer of 31.3 g/L from inulin. Overall, these strategies hold great potential for strengthening microbial synthesis of high value-added products derived from glutamate.

SELECTION OF CITATIONS
SEARCH DETAIL
...